Double-resonant optical materials with embedded metal nanostructures

نویسندگان

  • Ildar R. Gabitov
  • Robert A. Indik
  • Natalia M. Litchinitser
  • Vladimir M. Shalaev
  • Joshua E. Soneson
چکیده

We derive equations modeling the resonant interaction of electric and magnetic components of light fields with metal nanostructures. This paired resonance was recently shown to produce negative refractive index. The model equations are a generalization of the well-known Maxwell–Lorentz model. We demonstrate that in the case of nonlinear polarization and linear magnetization, these equations are equivalent to a system of equations describing the resonant interaction of light with plasmonic oscillations in metal nanospheres. A family of solitary wave solutions is found that is similar to pulses associated with self-induced transparency in the framework of the Maxwell–Bloch model. The evolution of incident optical pulses is studied numerically, as are the collision dynamics of the solitary waves. These simulations reveal that the collision dynamics vary from near perfectly elastic to highly radiative, depending on the relative phase of the initial pulses. © 2006 Optical Society of America OCIS codes: 190.4400, 260.5740, 250.5530.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of InGaAsP-InP Double Microring Resonator using Signal Flow Graph Method

The buried hetero-structure (BH) InGaAsP-InP waveguide is used for asystem of double microring resonators (DMR). The light transmission and location ofresonant peaks are determined for six different sets of ring radii with different ordermode numbers. The effect of changing middle coupling coefficient on the box likeresponse is studied. It is found that the surge of coupling coefficient to the ...

متن کامل

Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing.

Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, ...

متن کامل

Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles

Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed ...

متن کامل

Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure

This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...

متن کامل

Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.

Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006